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 Abstract  

Scaleambiguity is the major challenge in the 

application of monocular visual odometry (MVO). A 

sound approach to MVO world scale estimation is 

proposed in this paper. Firstly, the Speed Up Robust 

Feature (SURF) is employed to extract features and 

KLT (Kanade-Lucas-Tomasi) optical flow functions as 

the visual feature matcher between the consecutive 

images. Then RANSAC is used to refine the feature 

matching to reduce the mismatches introduced by noise, 

the procedure can improve the accuracy of fundamental 

matrix. In order to get good ground feature which is 

used to overcome the scale ambiguity, the region of 

interest (ROI) where the ground in the images is 

selected and adaptively adjusted when the camera view 

is changed. The performance of the proposed approach 

is demonstrated with the widely used KITTI benchmark 

and compared with the classical MVO algorithm. 

Keywords: Accurate scale, Image processing, Motion 

estimation, Visual odometry 

I. INTRODUCTION 

Simultaneous Localization and Mapping 

(SLAM), is a key skill for autonomous mobile system. 

The goal of SLAM is the joint estimation of both the 

robot’s pose and a model of its surrounding 

environment. And that can be summarized as three 

issues: Where am I? Where am I going? How can I get 

there? 

 

Just as people look at the surroundings with 

their eyes, robot’s eyes are sensors. Most of the early 

works use a laser rangefinder as the main sensor. More 

recently, visual sensors have become the dominant 

choice (i.e. camera). Obviously, it called visual SLAM. 

Visual odometry (VO) [1] is the front-end technology 

of visual SLAM. VO is good at localization according 

to images from cameras. 

 

The main distinction we make when 

discussing visual odometry systems is that between 

stereo and monocular systems. Although monocular 

visual odometry (MVO) systems are hard pressed to 

compete with stereo systems due to the difficulties 

imposed by a single camera setting, a single camera is 

much cheaper and easier to use than stereo cameras. 

MVO significant improvements in the last few years. 

One of monocular challenges is scale 

estimation: we can’t know the scale of true word from 

only images input. It should be supplemented by other 

ways to determine the scale such as add another sensor 

like inertial measurement unit (i.e. IMU), finding 

something’s size is fixed (i.e. road signs) or some 

parameters have been known (i.e. height of camera). In 

this paper, we will introduce an implementation of 

MVO, use the height of camera and ground feature to 

estimate the scale, and experimentally confirm the 

overall performance of the method. 

 

II. RELATED WORK  

Visual odometry calculates the camera's 

position changes by many frames continuous images 

from different moments. VO was presented by Matthies 

et al in 1980 in [2], and they established a system 

framework contains feature extraction, feature matching 

or tracking and motion estimation. And the main steps 

to achieve MVO nowadays are similar to this in [3]: 

image correction, feature extraction, feature matching 

or tracking, motion estimation and determine the scale 

finally. 

 

A camera is a mapping between 3D word and 

2D image. In [4], it introduced how a camera works and 

the image will have a certain distortion because of 

camera is always not perfect. Before we do visual 

odometry, calibrating the camera and getting its’ 

intrinsic parameters first, which called calibration 

matrix K. 

 

About image processing, there are various 

algorithms of extracting feature points such as Harris, 

SIFT and SURF [5], [6], [7], and each have advantages 

and disadvantages. Then we can match point using rich 

feature descriptors or scene flow. Compared to the 

traditional rich feature matching like Fast Library for 

Approximate Nearest Neighbors (FLANN) in [9], using 

different approaches for selecting proper scene flow are 

more popular in recent years. For example, NOTF in 

[20] comparing and discussing different 3D-flows and 

choose the best one to estimate the ego-motion that 

leads to a high precision result. Optical flow among 

scene flow is the most widely used especially the KLT 

[10] to track feature. Feature matching will be wrong 

sometimes, and many methods were found to solve that 

like Random Sample Consensus (RANSAC) to 

distinguish inliers and outliers, and others in [9], [11], 
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[12]. The newest famous ROCC [21] and its upgrade 

version RotROCC [22] ranked #10 and #7 separately in 

Kitti, and the two algorithms are just based on optical 

flow and RANSAC. The great improvement in ROCC 

is that they propose an optical flow dependent feature-

adaptive scaling and distinguish inliers from outliers 

and then they normalized reprojection error in 

RotROCC to get a better result. In this paper, we just 

use normal optical flow based KLT and RANSAC to 

reject outliers. 

 

About motion estimation, it introduction 

what’s essential matrix E and fundamental matrix F, 

how they work and how to compute in [4], [13]. We use 

matched points to get them and usually estimate the 

ego-motion by decomposing them to get rotation and 

translation together. However, SOFT in [23], which 

ranked #6 in Kitti proposed in 2015, estimating rotation 

by the five point method and using the three point 

method for translation estimation separately. Only 

slightly less obvious is the fact that the overall scale of 

the scene cannot be determined when only using a 

single camera. A lot of ideas to make sure the scale in 

[14], [15], [16], [24]. Combining visual sensor and 

another sensor will have highest precision and robust, 

because it works well even though temporary lack of 

visual features and can play sensors respective 

advantages. The V-LOAM combining visual and lidar 

in [24] ranked #1 in Kitti, which starts with visual 

odometry and is improved by lidar odometry. Although 

it’s attractive, the cost is too high to achieve for us. The 

idea that fixed height of camera in [14] is more suitable 

with our robot model, and we compute the scale using 

the height and ground feature with ROI in this paper. 

 

III. FEATURE PROCESSING  

In this section, we describe the feature 

processing part of the algorithm. The results of this part 

are image coordinates of a subset of points that will be 

used in motion estimation. 

 

A. Feature Extraction 

SURF [6] is an accelerated version of Scale 

Invariant Feature Transform (SIFT) [7]. The feature 

extracted by SURF has scale invariance and rotation 

invariance. The SURF uses the local maxima of 

Hessian matrix determinants to locate the feature 

points. In paper [6] the Gaussian second order 

differential filtering model is simplified so that we get 

approximate solution of Hessian matrix: 

Det 𝐻𝑎𝑝𝑝𝑟𝑜𝑥  = 𝐷𝑥𝑥𝐷𝑦𝑦 − (0.9𝐷𝑥𝑦 )2 (1) 

D is the approximate of Gaussian second order 

partial conduction and point convolution, and it can be 

easily calculated using the integral image. Changing the 

size of the filtered template to obtain the scale space. 

And then we do non-maximum suppression (NMS). A 

point is compared with 26 fields around the current 

scale, the previous scale, and the next scale. It will be a 

feature point when it’s the max or the min of 26 points 

around. 

 

In order to make the feature points have 

rotation invariance, we should find the direction of 

feature. And in paper [6], it statistics harr wavelet 

feature around the feature point with the range of 60°in 

a circle of radius 6𝑠 (𝑠 is the scale of the feature point), 

and make the max value as the main direction. 

 

When we know the main direction, get 20*20 

points around the feature, and divided into 4*4 areas 

each has 5*5 points, just like the Fig 1 shows. For each 

area, we compute every points’ Harr wavelet response 

in x and y direction, and summation them like the Fig 1. 

As a result, every feature descriptor has 4*4*4=64 

dimensional vector. 

 
Fig 1.  Feature Descriptor 

B. Feature Tracking 

Optical flow is be used in this paper to match 

points at two frames of images. And using KLT [10] 

algorithm to achieve it. Optical flow is the process of 

matching selected points from one image to another, 

assuming both images are part of a sequence and 

relatively close to one another [8]. There are three 

premise assumptions of KLT: 

1) Brightness constant 

2) Time continuous or motion displacement is 

small 

3) Spatial consistency, adjacent points have 

similar movements 

The input of MVO are continuous images 

from a moving camera. So images fully consistent with 

the three prerequisites, and it is very applicable. The 

goal of KLT is that tracking a point we know in an 

image and find where the point is in the next frame 

image. And the way is computing movement, just the 

optical flow, of the point between two images. 

According to the brightness constant assumption and 

the third assumption, the same point and its local 

neighborhood in two images has similar grayscale 

value. Definition of the residual function: 

ε d = ε 𝑑𝑥 , 𝑑𝑦  

=   (𝐼 𝑥, 𝑦 − 𝐽(𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦))2

𝑢𝑦+𝑤𝑦

𝑦=𝑢𝑦−𝑤𝑦

𝑢𝑥+𝑤𝑥

𝑥=𝑢𝑥−𝑤𝑥

 

(2) 
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I and J mean the grayscale value of two image. 

The point we know is u and w is the window size. And 

optical flow is d in this formula. When we get the 

minimum value, the grayscale is the most similar in 

other words, we just think we tracking this point. 

 

KLT deal with small pixel displacement 

according to the second assumption. Solution for this is 

a pyramidal implementation like figure. The original 

image is Layer 0 and every up one layer the image size 

halved, and the same to coordinate of u. The window 

size w is constant for all pyramid. The structure of the 

image pyramid is shown in Fig 2. 

 
Fig 2. Imagepyramid 

With the image being smaller, the pixel 

displacement being smaller, too. Computing optical 

flow dlm in the highest layer first. However, optical 

flow dlm-1 in next layer isn’t simply double because 

the error will also be double. We need get a new dlm-1 

on the basis of the previous layer dlm, and do this until 

the original image. The residual function only have one 

minimum value, so that when its derivative value is 0, 

the d is we want and we can easily tracking the point. 

 

Feature tracking will be wrong sometimes, that 

will affect the follow analysis. Using RANSAC to 

reject mismatches [11], so that we can use right 

matches to compute a better result. RANSAC is a 

mathematical model to get rid of noise and bad data, 

and it makes data be beater. It is based on the following 

principle: In each iteration, a minimum number of 

random samples is taken from the correspondences to 

create a motion hypothesis. Then, a score for each 

feature is calculated that describes whether it supports 

the hypothesis. If the motion estimate reaches a 

predefined support of the features, the non-supporting 

features are marked as outliers. Otherwise, a new 

random sample is drawn and the next iteration starts. 

 

Obviously, we will get lots of fundamental 

matrix F by matched points (the next section). Some 

will be good that from right matching. However some F 

will be bad because of wrong matching and noise. 

RANSAC can filter out good F, which means right 

matching, as inliers and get rid of the bad. And finally, 

computing new F by inliers. 

 

IV. MOTION ESTIMATION 

Motion estimation is split into two parts. 

Firstly, the rotation and translation are estimated 

without scale, and secondly, the scale is estimated by 

ground feature and ROI. 

 

A. Motion without Scale 

The core to calculate camera’s pose is epipolar 

geometry [4]. From the matching points of the 

preceding and succeeding frames we can calculate 

essential matrix E or fundamental matrix F, whose 

parameters contains information of rotation R and 

translation t between two frames. And we can get R and 

t by matrix decomposition. The relationship between E 

and F is: 

E = 𝐾′𝑇𝐹𝐾(3) 

It means that we can get fundamental matrix 

directly from the original images but hard to estimate 

motion accurately because of camera distortion. And 

essential matrix is calibrated and the estimate rotation 

and translation exactly. As a result, we usually get F 

first and then compute E with K and finally decompose 

it to estimate motion. 

 

Normalization is necessary before computing. 

Just like RotROCC normalized reprojection error in 

[22], we normalized feature points here. In this way 

coordinate dependency can be almost completely 

removed. And it leads to more accurate results. The 

feature point is scaled to the average distance from 

point x=(u, v, w)𝑇 to the origin is equal to √2. 

According to the epipolar geometry, we know 

theformula: 

𝑥 ′𝑇𝐹𝑥 = 0  (4) 

The matched feature points (x, x’) are known, 

and what we want is parameters of E. If parameters we 

unknown write as a vector f, and coordinates of x and 

x’ write as a matrix A, as a result we can write (4) to 

𝐴𝑓 = 0 (5) 

 

We can see it’s a general homogeneous linear 

equations. Because of F is 3×3, the vector f has 9-

dimensional. It can be solution by least squares when 

there have at least 8 groups of matched feature points 

[17]. After using RANSAC we transform the F with K 

to E, and the E can be decomposition to R and t by 

SVD, but four possible solutions are obtained. Linear 

triangulation will help us to find the right one [4]. 

 

B. Scale Estimation 

MVO using one camera, unlike binocular visual 

odometry, so that we can’t know the scale of true word 

from images only. It should be supplemented by other 

ways to determine the scale like methods are described 

in Chapter 2. In this paper, we suppose the ground is 

flat and the camera height is fixed, whose value is h*, 

like Fig 3. We also assume the camera is parallel to the 

ground and the ground feature point is 𝐗𝑖 =
 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 

𝑇𝐴  after reconstruction [14]. 

 



International Journal of Recent Engineering Science (IJRES), 

ISSN: 2349-7157, Volume4 Issue 6 November to December 2017 

46 

www.ijresonline.com 

 
Fig 3. Camera and Ground Feature Model 

The Gaussian kernel weight is used to 

calculate the vertical distance h  from the reconstructed 

ground feature to the camera. The formula is shown as 

(6). The (7) is kernel function and the variance is given 

by (8). 

𝑕 =
𝑎𝑟𝑔𝑚𝑎𝑥∑𝑘 𝑌𝑖 − 𝑕𝑖 

𝑗𝑖
 (6) 

k 𝑥 = exp  
−𝑥2

2𝜎𝑕
2   (7) 

𝜎𝑕 =
1

50
𝑚𝑒𝑑 𝐗 𝐢 1  (8) 

This method is improved on the basis of viso-

mono, libviso2, and it’s effective when all the features 

come from ground. However, Gaussian kernel function 

will have deviation if the features come from others, 

such as building and trees. So we should identify the 

features, and select the ground features. 

 

As we all know, the road (or street) is always 

in substantially the same region of the images when the 

camera is parallel to the ground. And its’ gray values 

are close to each other and different from the rest in the 

image generally. Selecting ROI of images, a region we 

need where the road must will be, as feature area to 

extract ground features. An example is given in Fig 

4.The image comes from KITTI [18], sequence 0, 

image_0, and number 000000.png, whose resolution is 

1241×376. The area (u, v) is be chosen as ROI, whose 

u ∈ [200,800] and v ∈ [300,376). Circles are ground 

feature as a result shown in the fig 4. 

 

. 
Fig 4 Ground Features 

 

The vertical distance from ground to camera is 

always larger than others. Once a feature point is not 

ground feature is extracted, its’ distance value will 

smaller than ground feature. We change the kernel 

function to classification, like (9). We can adaptive 

amplification of ROI when the number of feature is too 

small and ROI is constrained by this formula. In this 

way, we can always get enough and right ground 

feature to compute the scale. 

k 𝑥 =  
𝑒𝑥 𝑝  

−𝑥2

2𝜎𝑕
2 𝑜𝑡𝑕𝑒𝑟𝑠

𝑒𝑥 𝑝  
−𝑥2

2 0.1𝜎𝑕  
2 𝑥 > 0

 (9) 

Finally, we solution 𝑕  by (6). Multiply the 

scale to the translation t, and then the scale of image to 

the actual can be determined. 

S =
𝑕∗

𝑕 
(10) 

Obviously, the road is not flat completely. The 

more bumps the road is, the greater error of the scale 

will be. In other words, we can know the conditions of 

road we through according to the translation error to 

some extent by this method. And the method need to be 

further improved. 

 

V. EXPERIMENTAL RESULTS 

All the image data in this paper are from 

KITTI, and the code is based on openCV2.4.9, libviso2, 

MATLAB 2015b and Visual Studio 2015. 

 

The data set from KITTI is captured by two 

high-resolution color and grayscale cameras fixed on an 

off-road vehicle on rural roads and motorway in a 

medium-sized city called Karlsruhe. It provides camera 

intrinsic parameters K, real motion trajectory measured 

by GPS/oxts and a translation and rotation error 

evaluation code [19].  

 

In this paper, the first 2000 images of image_0 

of sequence 00, sequence 05 and sequence 08 from 

KITTI were tested for mapping path. And error 

evaluation using the whole dataset of each sequence. 

The calibration matrix K of sequence 00 is  

 

K =  
718.856 0 607.1928

0 718.858 185.2517
0 0 1

  

And the location test result is shown in Fig 5. 

 
Fig 5.  Location Test Result of Sequence 00 

The calibration matrix K of sequence 05 and 08 

is 

  K =  
707.0912 0 601.8873

0 707.0912 185.1104
0 0 1

  

And the location test results are shown in Fig 6. 
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Fig 6.(A) Location Test Result of Sequence 05 

 
Fig 6.(B) Location Test Result of Sequence 08 

Comparing with figure 5 and figure 6, we can 

see that our method is much better than libviso2. The 

results are more matching with the truth and scale 

estimates accurately. Especially two sequences in Fig 5, 

there’re better when dealing with sequence 05 and 08 in 

Fig 6 than sequence 00 in Fig 5. The causes of this 

maybe the parameter of camera which leads to Fig 6 is 

the same one and different from the camera of sequence 

00. And another posable reason is that the road of 

sequence 00 is much worse than other two. It is truth 

that when we play the images of sequence 00 one by 

one, the road is bumpy and the camera lens always up 

and down. However, we assume the road is flat and the 

shaking let it’s hard to compute a right scale so that it 

leads to a bad result. 

Evaluation of relative translation error and 

relative rotation error by Kitti evaluation code are 

shown in Table 1. 

 
Table 1.Evaluation of libviso2 and our Method 

 sequences 00 05 08 

 

libviso2 

Translation 

error 

0.327345 0.352596 0.349086 

Rotation 

error 

0.00049 0.000721 0.000404 

 

Our 

method 

Translation 

error 

0.064519 0.105512 0.107859 

Rotation 

error 

0.000316 0.000367 0.000272 

 

The error data of evaluation results in this table 

are from stats.txt with each sequence without 

conversion after running the evaluation code from Kitti. 

The errors are shown of sequence 00 in the table is 

statistical value for 4540 images (all images of 

sequence), and the same to sequence 05 is 2760 images 

and sequence 08 is 4070 images. It’s no doubt that our 

method’s errors are smaller than libviso2’s. Especially 

the translation error of libviso2 are more than three 

times than our method’s error. And our rotation error is 

nearly half of libviso2’s. It’s surprising that sequence 

00 is the best one according to the evaluation results in 

Table 1, different from the path we plot in Fig 5. Maybe 

we use only 2000 frames to show and the rotation error 

really effects path mapping. The rotation error of 08 is 

the smallest and we see the path in Fig 6 b matches 

better with ground truth than others. 

 
Fig7 Rotation Error and Translation Error of Sequence 

00 

 
Fig8 Rotation Error and Translation Error of Sequence 

05 

 
Fig9 Rotation Error and Translation Error of Sequence 

08 

The evaluation results of errors change with path 

length are shown in Fig 7, Fig 8 and Fig 9. Rotation 

errors are conversion to deg/m and we can see that 

rotation errors are always less than 0.03 deg/m and the 

error decreases with the path length increasing. In 

addition, translation errors is average of nearly 10% 

about 05 and 08, and translation error of 00 is smaller 

with an average nearly 6.5%. It’s quite a good result of 

MVO, whose scale is really a challenge. 
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VI. CONCLUSION 

In this paper, We have implemented a scale - 

based monocular visual odometry. However, there are 

also many to do for improvement.  Our method haven’t 

use any filtering like bundle adjustment or Kalman 

filter. Two defects of our method are regrettable which 

we will solve next. One is the code running slowly and 

it is not suitable of real-time. We will try to change 

code structure or other algorithm to improve the speed. 

The other is not robust enough. When we test the code, 

we found that it works well with a small dataset, but it 

sometimes almost not work leads to high error. And this 

method is depend on the flat ground assumption which 

is quite limited by road conditions. 
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